Molecular modeling of the RNA binding N-terminal part of cowpea chlorotic mottle virus coat protein in solution with phosphate ions.
نویسندگان
چکیده
The RNA-binding N-terminal arm of the coat protein of cowpea chlorotic mottle virus has been studied with five molecular dynamics simulations of 2.0 ns each. This 25-residue peptide (pep25) is highly charged: it contains six Arg and three Lys residues. An alpha-helical fraction of the sequence is stabilized in vitro by salts. The interaction of monophosphate (Pi) ions with pep25 was studied, and it was found that only two Pi ions are bound to pep25 on average, but water-mediated interactions between pep25 and Pi, which provide electrostatic screening for intrapeptide interactions, are abundant. Shielding by the Pi ions of repulsive electrostatic interactions between Arg sidechains increases the alpha-helicity of pep25. A hydrogen bond at the N-terminal end of the alpha-helix renders extension of the alpha-helix in the N-terminal direction impossible, in agreement with evidence from nuclear magnetic resonance experiments.
منابع مشابه
Role of electrostatics in the assembly pathway of a single-stranded RNA virus.
UNLABELLED We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-t...
متن کاملPackaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure.
The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28QPVIV32, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration...
متن کاملDeletion of highly conserved arginine-rich RNA binding motif in cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints.
The N-proximal region of cowpea chlorotic mottle virus (CCMV) capsid protein (CP) contains an arginine-rich RNA binding motif (ARM) that is also found in the CPs of other members of Bromoviridae and in other RNA binding proteins such as the Tat and Rev proteins of human immunodeficiency virus. To assess the critical role played by this motif during encapsidation, a variant of CCMV RNA3 (C3) pre...
متن کاملA method for the purification of large quantities of biologically active ribonucleic acid components from cowpea chlorotic mottle virus, a multicomponent plant virus.
Cowpea chlorotic mottle virus RNA has been prepared in comparatively high yield (at least 50%) by a modified phenol extraction method. The preparation, which has high biological activity, has been resolved into four components by zonal centrifugation on a 15-40% (w/v) sucrose density gradient. The components obtained have been tested for biological activity against whole plants and plant protop...
متن کاملVersatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.
We present the modification of the outer protein shell of cowpea chlorotic mottle virus (CCMV) with linear and strained alkyne groups. These functionalized protein capsids constitute valuable platforms for post-functionalization via click chemistry. After modification, the integrity of the capsid and the reversible disassembly behavior are preserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 71 6 شماره
صفحات -
تاریخ انتشار 1996